# Solubility and Density Isotherms for Potassium Aluminum Sulfate-Water-Alcohol Systems

## J. W. Mullin\* and M. Šlpek<sup>†</sup>

Department of Chemical and Biochemical Engineering, University College London, London WC1E 7JE, United Kingdom

The solubilities of potassium aluminum sulfate (potash alum) in water and mixtures of water-methanol, water-ethanol, and water-2-propanol have been determined over the temperature range 13-35 °C. The densities of the resulting saturated solutions have also been measured. The solubility data may conveniently be expressed, with an accuracy of  $\pm 2.5\%$ , by a relationship of the form log  $X = K_1m + K_2m^2$ , where X = ratio of the solubilities, expressed as mole fractions, of alum in the ternary (aqueous alcohol) and binary (aqueous) systems, and *m* is the molality of the alcohol in the aqueous solution.

#### Introduction

The precipitation of soluble inorganic salts from aqueous solution by the addition of an alcohol, with the dual purpose of enhancing both yield and purity, has long been considered as a possible industrial separation process (1-3). One such substance capable of yielding to this treatment is the hydrated double salt potassium aluminum sulfate (potash alum), K<sub>2</sub>S-O<sub>4</sub>·Al<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>·24H<sub>2</sub>O.

The object of the present work was to provide accurate solubility and density data for solutions of potash alum in water and in several alcohol-water mixtures as an aid toward the assessment of the potential of alcohol precipitation as a separation technique.

The solvents used were analytical-grade (BDH Ltd) methanol, ethanol, and 2-propanol and twice-distilled water. The potash alum was prepared as follows. Commercial pure-grade potash alum was dissolved in hot water, filtered first through a bed of active charcoal and then through a No. 3 sintered-glass filter, and crystallized by cooling. The product crystals were filtered off and then recrystallized from water.

### **Experimental Section**

The apparatus used for the solubility determinations (Figure 1) was a small glass vessel ( $\sim$ 50 cm<sup>3</sup>) fitted with a four-blade glass stirrer with the vessel and stirrer shaft sealed with a glycerol seal. The cell was immersed in a thermostat water bath controlled to  $\pm 0.02$  °C. The procedure was as follows.

Weighed quantities of potash alum and alcohol, together with predetermined amounts of water, were charged to the cell and agitated for  $\sim 1$  h. At the end of this time, as predicted, only a small amount of crystalline material was left undissolved. Small quantities of water (maximum 1 mL) were then added to the mixture at hourly intervals until all traces of crystalline material (observed under a strong back-light) had disappeared. Toward the end point, water was added dropwise. This method, when carefully performed, could reproducibly determine the solubility to a precision of at least  $\pm 0.5$ %.

The solubilities of potash alum in water and in aqueous mixtures of methanol, ethanol, and 2-propanol were determined

| Table I. | Solubilities and | <b>Densities of Potash</b> | Alum in Water and |
|----------|------------------|----------------------------|-------------------|
| Aqueous  | Methanol at 15,  | 25, and 35 °C              |                   |

|                                                                                   |                | - / / .            |                   |                  |             |  |
|-----------------------------------------------------------------------------------|----------------|--------------------|-------------------|------------------|-------------|--|
| alum                                                                              |                |                    |                   |                  |             |  |
|                                                                                   | CH,OH,         | H <sub>2</sub> O,  |                   |                  |             |  |
| g/(100                                                                            | g/(100         | g/(100             | density,          |                  |             |  |
| g of soln)                                                                        | g of soln)     | g of soln)         | g/cm <sup>3</sup> | $10^{3}x_{a}$    | m           |  |
| 15 °C: $x_0$                                                                      | = 1.8092 ×     | $(10^{-3}, K_1)$   | =-0.1362          | $4, K_2 = 3.3$   | 8963 × 10⁻³ |  |
| 8.713                                                                             |                | 91.286             | 1.0452            | 1.8092           |             |  |
| 5.861                                                                             | 3.874          | 90.265             | 1.0226            | 1.2022           | 1.3395      |  |
| 4.108                                                                             | 7.620          | 88.272             | 1.0071            | 0.8421           | 2.6943      |  |
| 2.651                                                                             | 11.982         | 85.367             | 0.9929            | 0.5462           | 4.3807      |  |
| 1.813                                                                             | 15.761         | 82.426             | 0.9831            | 0.3770           | 5.9682      |  |
| 1.135                                                                             | 21.230         | 77.635             | 0.9721            | 0.2405           | 8.5350      |  |
| 25 °C: x <sub>0</sub> :                                                           | = 2.5962 ×     | $10^{-3}, K_{1} =$ | -0.1212           | $9, K_{2} = 2.8$ | 3087 × 10⁻³ |  |
| 12.056                                                                            |                | 87.944             | 1.0600            | 2.5962           |             |  |
| 9.670                                                                             | 2.428          | 87.902             | 1.0423            | 2.0527           | 0.8621      |  |
| 7.521                                                                             | 5.012          | 87.467             | 1.0262            | 1.5792           | 1.7884      |  |
| 5.588                                                                             | 8.314          | 86.098             | 1.0104            | 1.1675           | 3.0141      |  |
| 3.425                                                                             | 13.631         | 82.944             | 0.9909            | 0.7172           | 5.1291      |  |
| 2.160                                                                             | 19.335         | 78.505             | 0.9758            | 0.4587           | 7.6870      |  |
| 0.929                                                                             | <b>29</b> .010 | 70.061             | 0.9548            | 0.2042           | 12.9238     |  |
| 35 °C: $x_0 = 3.7388 \times 10^{-3}, K_1 = -0.10320, K_2 = 1.6883 \times 10^{-3}$ |                |                    |                   |                  |             |  |
| 16.503                                                                            |                | 83.497             | 1.0803            | 3.7388           |             |  |
| 12.844                                                                            | 2.902          | 84.254             | 1.0542            | 2.8316           | 1.0750      |  |
| 9.888                                                                             | 6.192          | 83.920             | 1.0325            | 2.1436           | 2.3028      |  |
| 6.920                                                                             | 10.434         | 82.646             | 1.0097            | 1.4823           | 3.9403      |  |
| 4.192                                                                             | 16.790         | 79.018             | 0.9851            | 0.8990           | 6.6319      |  |
| 2.475                                                                             |                | 74.173             | 0.9658            | 0.5380           | 9.8261      |  |
| 1.466                                                                             | 29.052         | 69.482             | 0.9514            | 0.3242           | 13.0504     |  |
|                                                                                   |                |                    |                   |                  |             |  |

| Table II. | Solubilities and Densities of Potash Alum in Water and |  |
|-----------|--------------------------------------------------------|--|
| Aqueous   | Ethanol at 15, 25, and 35 °C                           |  |

| alum                  |            |                  |          |                   |                        |
|-----------------------|------------|------------------|----------|-------------------|------------------------|
| (hydrate),            | C,H,OH,    | Н,О,             |          |                   |                        |
| g/(100                | g/(100     | g/(100           | density, |                   |                        |
| g of soln)            | g of soln) | g of soln)       | g/cm³    | 10°x <sub>a</sub> | m                      |
| 15 °C: $x_0$          | = 1.8092 × | $10^{-3}, K_1 =$ | -0.2313  | $6, K_2 = 6.7$    | 711 × 10 <sup>-3</sup> |
| 8.713                 |            | 91.286           | 1.0452   | 1.8092            |                        |
| 5.490                 | 3.811      | 90.699           | 1.0205   | 1.1295            | 0.9122                 |
| 3.317                 | 7.788      | 88.895           | 1.0030   | 0.6844            | 1.9018                 |
| 2.082                 | 11.731     | 86.187           | 0.9913   | 0.4353            | 2.9545                 |
| 0.949                 | 17.780     | 81.271           | 0.9780   | 0.2042            | 4.7485                 |
| 25 °C: x <sub>o</sub> | = 2.5962 × | $10^{-3}, K_1 =$ | -0.2194  | $6, K_2 = 7.0$    | 891 × 10 <sup>-3</sup> |
| 12.056                |            | 87.944           | 1.0600   | 2.5962            |                        |
| 10.450                | 1.169      | 88.381           | 1.0488   | 2.2284            | 0.2872                 |
| 8.362                 | 3.149      | 88.489           | 1.0335   | 1.7664            | 0.7725                 |
| 5.012                 | 7.493      | 87.495           | 1.0090   | 1.0513            | 1.8588                 |
| 3.303                 | 11.030     | 85.667           | 0.9952   | 0.6965            | 2.7947                 |
| 1.867                 | 16.459     | 81.674           | 0.9801   | 0.4021            | 4.3742                 |
| 0.616                 | 26.220     | 73.164           | 0.9597   | 0.1402            | 7.7787                 |
| 0.573                 | 26.302     | 73.125           | 0.9598   | 0.1305            | 7.8072                 |
| 35 °C: x₀             | = 3.7388 × | $10^{-3}, K_1 =$ | -0.1978  | $1, K_2 = 6.1$    | 938 × 10 <sup>-3</sup> |
| 16.503                |            | 83.497           | 1.0803   | 3.7388            |                        |
| 11. <b>964</b>        | 2.989      | 85.047           | 1.0442   | 2.6280            | 0.7628                 |
| 8.971                 | 5.788      | 85.241           | 1.0282   | 1.9428            | 1.4739                 |
| 6.182                 | 9.345      | 84.473           | 1.0071   | 1.3301            | 2.4013                 |
| 3.730                 | 14.602     | 81.668           | 0.9878   | 0.8099            | 3.8810                 |
| 1.396                 | 23.790     | 74.814           | 0.9614   | 0.3149            | 6.9023                 |

at three temperatures: 15, 25, and 35 °C. The densities of the various saturated solutions produced in the solubility cell were determined with a 10-mL bicapillary pycnometer of the type described by Lipkin et al. (4).

<sup>&</sup>lt;sup>†</sup>Present address: Department of Physical Chemistry, Institute of Chemical Technology, 166 26 Prague-6-Dejvice, Czechoslovakia.

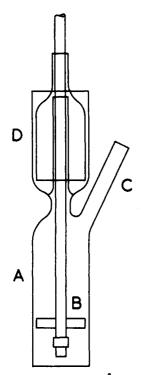
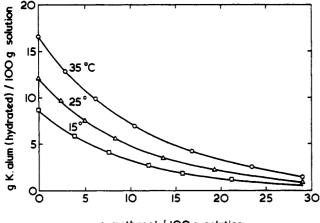




Figure 1. Solubility apparatus: (A) 50-cm<sup>3</sup> glass cell; (B) four-bladed glass stirrer; (C) charging port; (D) glycerol seal for stirrer shaft.



g methanol / IOO g solution

Figure 2. Solubility of potash alum in aqueous methanol at 15, 25, and 35 °C.

The data are typified by the conventional solublity curves shown in Figure 2, for aqueous methanol solutions, but the most successful correlation method was found to be through a second-order function of the form

$$\log X = K_1 m + K_2 m^2 + C$$
 (1)

where  $X = x_a/x_0$ ,  $x_a$  = solubility (mole fraction) of alum in the ternary (aqueous alcohol) solution,  $x_0 =$  solubility (mole fraction) of alum in the binary (aqueous) solution, m = molality of alcohol in aqueous solution (mol of alcohol/kg of water), and  $K_1, K_2$ , and C are constants. An example of one of the quadratic regression fits is shown in Figure 3 (alum-water-methanol at 15°°C).

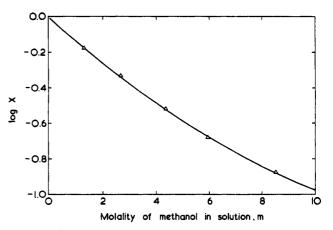



Figure 3. General correlation of potash alum solubilities in aqueous methanol at 15 °C (curve calculated according to eq 1).

Table III. Solubilities and Densities of Potash Alum in Water and Aqueous 2-Propanol at 15, 25, and 35 °C

| alu                                                                               | ım     |                 |                  |          |                   |                        |
|-----------------------------------------------------------------------------------|--------|-----------------|------------------|----------|-------------------|------------------------|
| (hyd                                                                              | rate), | C,H,OH,         | H,O,             |          |                   |                        |
| g/(                                                                               | 100    | g/(100          | g/(100           | density, |                   |                        |
| gof                                                                               | soln)  | g of soln)      | g of soln)       | g/cm³    | 10°x <sub>a</sub> | m                      |
| 15 °C                                                                             | : x,=  | = 1.8092 ×      | $10^{-3}, K_1 =$ | -0.3123  | $0, K_2 = 1.0$    | 310 × 10 <sup>-2</sup> |
| 8.                                                                                | 713    |                 | 91.286           | 1.0452   | 1.8092            |                        |
| 5.                                                                                | 459    | 3.622           | 90.919           | 1.0209   | 1.1252            | 0.6627                 |
| 3.                                                                                | 298    | 7.439           | 89.263           | 1.0036   | 0.6839            | 1.3864                 |
| 2.                                                                                | 043    | 11.371          | 86.586           | 0.9921   | 0.4308            | 2.1847                 |
| 0.                                                                                | 919    | 16.981          | 82.100           | 0.9797   | 0.2001            | 3.4408                 |
| 25 °C                                                                             | :: x,= | = 2.5962 ×      | $10^{-3}, K_1 =$ | -0.3073  | $2, K_2 = 1.6$    | 656 × 10 <sup>-2</sup> |
|                                                                                   | 056    |                 | 87.944           | 1.0600   | 2.5962            |                        |
| 9.                                                                                | 115    | 2.275           | 88.610           | 1.0396   | 1.9345            | 0.4272                 |
| 6.                                                                                | 937    | 4.612           | 88.451           | 1.0239   | 1.4641            | 0.8675                 |
| 4.                                                                                | 960    | 7.432           | 87.608           | 1.0092   | 1.0473            | 1.4113                 |
| 2.                                                                                | 953    | 11.711          | 85.336           | 0.9928   | 0.6307            | 2.2831                 |
| 1.                                                                                | 787    | 15. <b>97</b> 0 | 82.243           | 0.9810   | 0.3897            | 3.2304                 |
| 0.                                                                                | 771    | 24.140          | 75.089           | 0.9630   | 0.1778            | 5.3484                 |
| 35 °C: $x_0 = 3.7388 \times 10^{-3}, K_1 = -0.26947, K_2 = 1.0970 \times 10^{-2}$ |        |                 |                  |          |                   |                        |
| 16.                                                                               | 503    |                 | 83.497           | 1.0803   | 3.7388            |                        |
| 13.                                                                               | 578    | 1.490           | 84.932           | 1.0610   | 3.0106            | 0.2919                 |
| 11.                                                                               | 044    | 3.628           | 85.328           | 1.0434   | 2.4209            | 0.7074                 |
| 8.                                                                                | 019    | 6.644           | 85.337           | 1.0224   | 1.7405            | 1.2951                 |
| 5.                                                                                | 400    | 10.182          | 84.418           | 1.0030   | 1.1708            | 2.0066                 |
| 2.                                                                                | 860    | 16.194          | 80.946           | 0.9807   | 0.6326            | 3.3281                 |
| 1.                                                                                | 240    | 23.652          | 75.108           | 0.9595   | 0.2864            | 5.2388                 |

In all cases, the constant C in eq 1 was found to be insignificant, and it is thus possible to estimate the solubilities (mole fraction  $x_a$ ) of alum in the aqueous alcohol systems, with a precision of  $\pm 2.5\%$ , from the simpler relationship:

$$\log X = K_1 m + K_2 m^2 \tag{2}$$

Values of  $K_1$  and  $K_2$  are listed in Tables I-III.

#### **Literature Cited**

- Thompson, A. R.; Molstad, M. C. *Ind. Eng. Chem.* **1945**, *37*, 1244. Thompson, A. R.; Blecharczyk, S. S. Kingston, RI, 1959, University of Rhode Island Engineering Research and Development Report No. 2. Hoppe, R. *Chem. Process Eng.* (*London*) **1969**, *49*, 61. Lipkin, H. R.; Davidson, J. A.; Harvey, W. T.; Kurtz, S. S. *Ind. Eng. Chem., Anal. Ed.* **1944**, *16*, 55. (1) (2)
- (4)

Received for review October 14, 1980. Accepted January 12, 1981. We are indebted to the Science Research Council for financial support.